Anda belum login :: 17 Aug 2022 21:20 WIB
Detail
ArtikelModeling of Advanced Melting Zone for Manufacturing of Optical Fibers  
Oleh: Lee, Kok-Meng ; Zhi, Zhou ; Wei, Zhiyong ; Hong, Siu-Ping
Jenis: Article from Journal - ilmiah internasional
Dalam koleksi: Journal of Manufacturing Science and Engineering vol. 126 no. 4 (Nov. 2004), page 750-759.
Topik: OPTICAL FIBERS; modeling; melting zone; manufacturing; optical fibers
Ketersediaan
  • Perpustakaan Pusat (Semanggi)
    • Nomor Panggil: JJ93.6
    • Non-tandon: 1 (dapat dipinjam: 0)
    • Tandon: tidak ada
    Lihat Detail Induk
Isi artikelOptical fibers are drawn from preforms (fused silica glass rods) typically made up of two concentric cylinders (the core rod and the clad tube), which are usually joined in a separate fusion process. The setup time and hence manufacturing cost can be significantly reduced if the two cylinders can be joined in the same furnace in which the fiber is drawn. A good understanding of the transient temperature distribution is needed for controlling the feed rate to avoid thermally induced cracks. Since direct measurement of the temperature fields is often impossible, the geometrical design of the preform and the control of the feed rate have largely been accomplished by trials - and - errors. The ability to predict the transient temperature distribution and the thermally induced stresses will provide a rational basis to design optimization and feed rate control of the process. In this paper, we present an analytical model to predict the transient conductive-radiative transfer as two partially joined, concentric glass cylinders with specular surfaces are fed into the furnace. Finite volume method (FVM) is used to solve the radiative transfer equation (RTE). The specular surface reflectivity is obtained by the Fresnel's law and the Snell's law. The boundary intensities are obtained through the coupling of the interior glass radiative transfer and the exterior furnace enclosure analysis. The model has been used to numerically study the transient conductive - radiative transfer in the advanced melting zone (AMZ) of an optic fiber drawing process. This problem is of both theoretical and practical interest in the manufacture of optical fibers. The computational method for the radiation transfer developed in this paper can also be applied to the simulation of the fiber drawing process and other glass - related manufacturing processes.
Opini AndaKlik untuk menuliskan opini Anda tentang koleksi ini!

Kembali
design
 
Process time: 0.015625 second(s)