Anda belum login :: 24 Feb 2024 05:47 WIB
ArtikelCross-Topic Learning for Work Prioritization in Systematic Review Creation and Update  
Oleh: Cohen, Aaron M. ; Ambert, Kyle ; McDonagh, Marian
Jenis: Article from Journal - ilmiah internasional
Dalam koleksi: JAMIA ( Journal Of the American Medical Informatics Association ) vol. 16 no. 5 (Sep. 2009), page 690-704.
Topik: systematic reviews (SRs)
  • Perpustakaan FK
    • Nomor Panggil: J43.K.2009.02
    • Non-tandon: 1 (dapat dipinjam: 0)
    • Tandon: tidak ada
    Lihat Detail Induk
Isi artikelObjective: Machine learning systems can be an aid to experts performing systematic reviews (SRs) by automatically ranking journal articles for work-prioritization. This work investigates whether a topic-specific automated document ranking system for SRs can be improved using a hybrid approach, combining topic-specific training data with data from other SR topics. Design: A test collection was built using annotated reference files from 24 systematic drug class reviews. A support vector machine learning algorithm was evaluated with cross-validation, using seven different fractions of topic-specific training data in combination with samples from the other 23 topics. This approach was compared to both a baseline system, which used only topic-specific training data, and to a system using only the nontopic data sampled from the remaining topics. Measurements: Mean area under the receiver-operating curve (AUC) was used as the measure of comparison. Results: On average, the hybrid system improved mean AUC over the baseline system by 20%, when topic-specific training data were scarce. The system performed significantly better than the baseline system at all levels of topic-specific training data. In addition, the system performed better than the nontopic system at all but the two smallest fractions of topic specific training data, and no worse than the nontopic system with these smallest amounts of topic specific training data. Conclusions: Automated literature prioritization could be helpful in assisting experts to organize their time when performing systematic reviews. Future work will focus on extending the algorithm to use additional sources of topic-specific data, and on embedding the algorithm in an interactive system available to systematic reviewers during the literature review process.
Opini AndaKlik untuk menuliskan opini Anda tentang koleksi ini!

Process time: 0.03125 second(s)