Anda belum login :: 01 Jul 2022 02:20 WIB
Detail
ArtikelScaling Probabilistic Models of Genetic Variation to Millions of Humans  
Oleh: Gopalan, Prem ; Wei Hao ; Blei, David M. ; Storey, John D.
Jenis: Article from Journal - ilmiah internasional
Dalam koleksi: Nature Genetics vol. 48 no. 12 (Dec. 2016), page 1587-1590.
Topik: Computational Biology; Bioinformatics; Population Genetics
Ketersediaan
  • Perpustakaan FK
    • Nomor Panggil: N12.K
    • Non-tandon: 1 (dapat dipinjam: 0)
    • Tandon: tidak ada
    Lihat Detail Induk
Isi artikelA major goal of population genetics is to quantitatively understand variation of genetic polymorphisms among individuals. The aggregated number of genotyped humans is currently on the order of millions of individuals, and existing methods do not scale to data of this size. To solve this problem, we developed TeraStructure, an algorithm to fit Bayesian models of genetic variation in structured human populations on tera-sample-sized data sets (1012 observed genotypes; for example, 1 million individuals at 1 million SNPs). TeraStructure is a scalable approach to Bayesian inference in which subsamples of markers are used to update an estimate of the latent population structure among individuals. We demonstrate that TeraStructure performs as well as existing methods on current globally sampled data, and we show using simulations that TeraStructure continues to be accurate and is the only method that can scale to tera-sample sizes.
Opini AndaKlik untuk menuliskan opini Anda tentang koleksi ini!

Kembali
design
 
Process time: 0.03125 second(s)