Anda belum login :: 22 Apr 2025 19:33 WIB
Home
|
Logon
Hidden
»
Administration
»
Collection Detail
Detail
Empirical Risk Minimization for Support Vector Classifiers
Oleh:
Perez-Cruz, F.
;
Navia-Vazquez, A.
;
Figueiras-Vidal, A. R.
;
Artes-Rodriguez, A.
Jenis:
Article from Journal - ilmiah internasional
Dalam koleksi:
IEEE Transactions on Neural Networks vol. 14 no. 2 (2003)
,
page 296-303.
Topik:
risk theory
;
risk minimization
;
support vector classifiers
Ketersediaan
Perpustakaan Pusat (Semanggi)
Nomor Panggil:
II36.7
Non-tandon:
1 (dapat dipinjam: 0)
Tandon:
tidak ada
Lihat Detail Induk
Isi artikel
In this paper, we propose a general technique for solving support vector classifiers (SVCs) for an arbitrary loss function, relying on the application of an iterative reweighted least squares (IRWLS) procedure. We further show that three properties of the SVC solution can be written as conditions over the loss function. This technique allows the implementation of the empirical risk minimization (ERM) inductive principle on large margin classifiers obtaining, at the same time, very compact (in terms of number of support vectors) solutions. The improvements obtained by changing the SVC loss function are illustrated with synthetic and real data examples.
Opini Anda
Klik untuk menuliskan opini Anda tentang koleksi ini!
Kembali
Process time: 0.015625 second(s)