Anda belum login :: 23 Jul 2025 10:54 WIB
Detail
ArtikelCommunication Channel Equalization Using Complex-Valued Minimal Radial Basis Function Neural Networks  
Oleh: Saratchandran, P. ; Jianping, Deng ; Sundararajan, Narasimhan
Jenis: Article from Journal - ilmiah internasional
Dalam koleksi: IEEE Transactions on Neural Networks vol. 13 no. 3 (2002), page 687-696.
Topik: communication; communication; channel equalization; complex - valued; minimal radial basis function; neural networks
Ketersediaan
  • Perpustakaan Pusat (Semanggi)
    • Nomor Panggil: II36.6
    • Non-tandon: 1 (dapat dipinjam: 0)
    • Tandon: tidak ada
    Lihat Detail Induk
Isi artikelA complex radial basis function neural network is proposed for equalization of quadrature amplitude modulation (QAM) signals in communication channels. The network utilizes a sequential learning algorithm referred to as complex minimal resource allocation network (CMRAN) and is an extension of the MRAN algorithm originally developed for online learning in real - valued radial basis function (RBF) networks. CMRAN has the ability to grow and prune the (complex) RBF network's hidden neurons to ensure a parsimonious network structure. The performance of the CMRAN equalizer for nonlinear channel equalization problems has been evaluated by comparing it with the functional link artificial neural network (FLANN) equalizer of J. C. Patra et al. (1999) and the Gaussian stochastic gradient (SG) RBF equalizer of I. Cha and S. Kassam (1995). The results clearly show that CMRAN s performance is superior in terms of symbol error rates and network complexity.
Opini AndaKlik untuk menuliskan opini Anda tentang koleksi ini!

Kembali
design
 
Process time: 0 second(s)