Anda belum login :: 18 Apr 2025 09:28 WIB
Home
|
Logon
Hidden
»
Administration
»
Collection Detail
Detail
Unsupervised Clustering With Spiking Neurons By Sparse Temporal Coding and Multilayer RBF Networks
Oleh:
Bohte, S. M.
;
Poutre, H. La
;
Kok, J. N.
Jenis:
Article from Journal - ilmiah internasional
Dalam koleksi:
IEEE Transactions on Neural Networks vol. 13 no. 2 (2002)
,
page 426-435.
Topik:
multilayer networks
;
clustering
;
spiking neurons
;
sparse temporal coding
;
multilayer
;
RBF networks
Ketersediaan
Perpustakaan Pusat (Semanggi)
Nomor Panggil:
II36.6
Non-tandon:
1 (dapat dipinjam: 0)
Tandon:
tidak ada
Lihat Detail Induk
Isi artikel
We demonstrate that spiking neural networks encoding information in the timing of single spikes are capable of computing and learning clusters from realistic data. We show how a spiking neural network based on spike - time coding and Hebbian learning can successfully perform unsupervised clustering on real - world data, and we demonstrate how temporal synchrony in a multilayer network can induce hierarchical clustering. We develop a temporal encoding of continuously valued data to obtain adjustable clustering capacity and precision with an efficient use of neurons : input variables are encoded in a population code by neurons with graded and overlapping sensitivity profiles. We also discuss methods for enhancing scale - sensitivity of the network and show how the induced synchronization of neurons within early RBF layers allows for the subsequent detection of complex clusters.
Opini Anda
Klik untuk menuliskan opini Anda tentang koleksi ini!
Kembali
Process time: 0.015625 second(s)