Anda belum login :: 03 Jun 2025 15:47 WIB
Home
|
Logon
Hidden
»
Administration
»
Collection Detail
Detail
A Hybrid Linear-Neural Model for Time Series Forecasting
Oleh:
Veiga, A.
;
Medeiros, M. C.
Jenis:
Article from Journal - ilmiah internasional
Dalam koleksi:
IEEE Transactions on Neural Networks vol. 11 no. 6 (2000)
,
page 1402-1412.
Topik:
FORECASTING
;
hybrid
;
linear - neural model
;
time series
;
forecasting
Ketersediaan
Perpustakaan Pusat (Semanggi)
Nomor Panggil:
II36.4
Non-tandon:
1 (dapat dipinjam: 0)
Tandon:
tidak ada
Lihat Detail Induk
Isi artikel
This paper considers a linear model with time varying parameters controlled by a neural network to analyze and forecast nonlinear time series. We show that this formulation, called neural coefficient smooth transition autoregressive model, is in close relation to the threshold autoregressive model and the smooth transition autoregressive model with the advantage of naturally incorporating linear multivariate thresholds and smooth transitions between regimes. In our proposal, the neural - network output is used to induce a partition of the input space, with smooth and multivariate thresholds. This also allows the choice of good initial values for the training algorithm.
Opini Anda
Klik untuk menuliskan opini Anda tentang koleksi ini!
Kembali
Process time: 0.015625 second(s)