Anda belum login :: 11 Jun 2025 08:42 WIB
Home
|
Logon
Hidden
»
Administration
»
Collection Detail
Detail
On The Convergence of Validity Interval Analysis
Oleh:
Maire, F.
Jenis:
Article from Journal - ilmiah internasional
Dalam koleksi:
IEEE Transactions on Neural Networks vol. 11 no. 3 (2000)
,
page 802-807.
Topik:
interval analysis
;
convergence
;
validity interval
;
analysis
Ketersediaan
Perpustakaan Pusat (Semanggi)
Nomor Panggil:
II36.4
Non-tandon:
1 (dapat dipinjam: 0)
Tandon:
tidak ada
Lihat Detail Induk
Isi artikel
Validity interval analysis (VIA) is a generic tool for analyzing the input - output behaviour of feedforward neural networks. VIA is a rule extraction technique that relies on a rule refinement algorithm. The rules are of the form Ri ? R0 i. e. "if the input of the neural network is in the region Ri, then its output is in the region R0," where regions are axis parallel hypercubes. VIA conjectures, then refines and checks rules for inconsistency. This process can be computationally expensive, and the rule refinement phase becomes critical. Hence, the importance of knowing the complexity of these rule refinement algorithms. In this paper, we show that the rule refinement part of VIA always converges in one run for single - weight - layer networks, and has an exponential average rate of convergence for multilayer networks. We also discuss some variations of the standard VIA formulae.
Opini Anda
Klik untuk menuliskan opini Anda tentang koleksi ini!
Kembali
Process time: 0.015625 second(s)