Anda belum login :: 04 Jun 2025 10:30 WIB
Home
|
Logon
Hidden
»
Administration
»
Collection Detail
Detail
A Cross-Associative Neural Network for SVD of Nonsquared Data Marix in Signal Processing
Oleh:
Feng, Da-Zheng
;
Bao, Zheng
;
Zhang, Xian-Da
Jenis:
Article from Journal - ilmiah internasional
Dalam koleksi:
IEEE Transactions on Neural Networks vol. 12 no. 5 (2001)
,
page 1215-1221.
Topik:
matrix
;
cross - associative
;
neural network
;
SVD
;
non squared
;
data matrix
;
signal processing
Ketersediaan
Perpustakaan Pusat (Semanggi)
Nomor Panggil:
II36.5
Non-tandon:
1 (dapat dipinjam: 0)
Tandon:
tidak ada
Lihat Detail Induk
Isi artikel
This paper proposes a cross - associative neural network (CANN) for singular value decomposition (SVD) of a non - squared data matrix in signal processing, in order to improve the convergence speed and avoid the potential instability of the deterministic networks associated with the cross-correlation neural - network models. We study the global asymptotic stability of the network for tracking all the singular components, and show that the selection of its learning rate in the iterative algorithm is independent of the singular value distribution of a non - squared matrix. The performances of CANN are shown via simulations.
Opini Anda
Klik untuk menuliskan opini Anda tentang koleksi ini!
Kembali
Process time: 0 second(s)