Anda belum login :: 05 Jun 2025 05:42 WIB
Home
|
Logon
Hidden
»
Administration
»
Collection Detail
Detail
Efficient Source Adaptivity in Independent Component Analysis
Oleh:
Vlasis, N.
;
Motomura, Y.
Jenis:
Article from Journal - ilmiah internasional
Dalam koleksi:
IEEE Transactions on Neural Networks vol. 12 no. 3 (2001)
,
page 559-566.
Topik:
task components
;
efficient source
;
adaptivity
;
component analysis
Ketersediaan
Perpustakaan Pusat (Semanggi)
Nomor Panggil:
II36.5
Non-tandon:
1 (dapat dipinjam: 0)
Tandon:
tidak ada
Lihat Detail Induk
Isi artikel
A basic element in most independent component analysis (ICA) algorithms is the choice of a model for the score functions of the unknown sources. While this is usually based on approximations, for large data sets it is possible to achieve “source adaptivity” by directly estimating from the data the “true” score functions of the sources. We describe an efficient scheme for achieving this by extending the fast density estimation method of Silverman (1982). We show with a real and a synthetic experiment that our method can provide more accurate solutions than state - of - the - art methods when optimization is carried out in the vicinity of the global minimum of the contrast function.
Opini Anda
Klik untuk menuliskan opini Anda tentang koleksi ini!
Kembali
Process time: 0.015625 second(s)