Anda belum login :: 23 Jul 2025 23:06 WIB
Detail
ArtikelK-Winner Machines for Pattern Classification  
Oleh: Rovetta, S. ; Ridella, S. ; Zunino, R.
Jenis: Article from Journal - ilmiah internasional
Dalam koleksi: IEEE Transactions on Neural Networks vol. 12 no. 2 (2001), page 371-385.
Topik: Pattern; k - winner machines; pattern classification
Ketersediaan
  • Perpustakaan Pusat (Semanggi)
    • Nomor Panggil: II36.5
    • Non-tandon: 1 (dapat dipinjam: 0)
    • Tandon: tidak ada
    Lihat Detail Induk
Isi artikelThe paper describes the K - winner machine (KWM) model for classification. KWM training uses unsupervised vector quantization and subsequent calibration to label data - space partitions. A K - winner classifier seeks the largest set of best - matching prototypes agreeing on a test pattern, and provides a local - level measure of confidence. A theoretical analysis characterizes the growth function of a K - winner classifier, and the result leads to tight bounds to generalization performance. The method proves suitable for high - dimensional multiclass problems with large amounts of data. Experimental results on both a synthetic and a real domain (NIST handwritten numerals) confirm the approach effectiveness and the consistency of the theoretical framework.
Opini AndaKlik untuk menuliskan opini Anda tentang koleksi ini!

Kembali
design
 
Process time: 0.015625 second(s)