Anda belum login :: 23 Jul 2025 23:06 WIB
Home
|
Logon
Hidden
»
Administration
»
Collection Detail
Detail
K-Winner Machines for Pattern Classification
Oleh:
Rovetta, S.
;
Ridella, S.
;
Zunino, R.
Jenis:
Article from Journal - ilmiah internasional
Dalam koleksi:
IEEE Transactions on Neural Networks vol. 12 no. 2 (2001)
,
page 371-385.
Topik:
Pattern
;
k - winner machines
;
pattern classification
Ketersediaan
Perpustakaan Pusat (Semanggi)
Nomor Panggil:
II36.5
Non-tandon:
1 (dapat dipinjam: 0)
Tandon:
tidak ada
Lihat Detail Induk
Isi artikel
The paper describes the K - winner machine (KWM) model for classification. KWM training uses unsupervised vector quantization and subsequent calibration to label data - space partitions. A K - winner classifier seeks the largest set of best - matching prototypes agreeing on a test pattern, and provides a local - level measure of confidence. A theoretical analysis characterizes the growth function of a K - winner classifier, and the result leads to tight bounds to generalization performance. The method proves suitable for high - dimensional multiclass problems with large amounts of data. Experimental results on both a synthetic and a real domain (NIST handwritten numerals) confirm the approach effectiveness and the consistency of the theoretical framework.
Opini Anda
Klik untuk menuliskan opini Anda tentang koleksi ini!
Kembali
Process time: 0.015625 second(s)