Anda belum login :: 05 Jun 2025 00:39 WIB
Detail
ArtikelAn Introduction to Kernel-Based Learning Algorithms  
Oleh: Tsuda, K. ; Ratsch, G. ; Scholkopf, B. ; Mika, S. ; Muller, K.-R.
Jenis: Article from Journal - ilmiah internasional
Dalam koleksi: IEEE Transactions on Neural Networks vol. 12 no. 2 (2001), page 181-201.
Topik: algorithms; kernel - based learning; algorithms
Ketersediaan
  • Perpustakaan Pusat (Semanggi)
    • Nomor Panggil: II36.5
    • Non-tandon: 1 (dapat dipinjam: 0)
    • Tandon: tidak ada
    Lihat Detail Induk
Isi artikelThis paper provides an introduction to support vector machines, kernel Fisher discriminant analysis, and kernel principal component analysis, as examples for successful kernel - based learning methods. We first give a short background about Vapnik - Chervonenkis theory and kernel feature spaces and then proceed to kernel based learning in supervised and unsupervised scenarios including practical and algorithmic considerations. We illustrate the usefulness of kernel algorithms by discussing applications such as optical character recognition and DNA analysis.
Opini AndaKlik untuk menuliskan opini Anda tentang koleksi ini!

Kembali
design
 
Process time: 0.015625 second(s)