Anda belum login :: 05 Jun 2025 00:39 WIB
Home
|
Logon
Hidden
»
Administration
»
Collection Detail
Detail
An Introduction to Kernel-Based Learning Algorithms
Oleh:
Tsuda, K.
;
Ratsch, G.
;
Scholkopf, B.
;
Mika, S.
;
Muller, K.-R.
Jenis:
Article from Journal - ilmiah internasional
Dalam koleksi:
IEEE Transactions on Neural Networks vol. 12 no. 2 (2001)
,
page 181-201.
Topik:
algorithms
;
kernel - based learning
;
algorithms
Ketersediaan
Perpustakaan Pusat (Semanggi)
Nomor Panggil:
II36.5
Non-tandon:
1 (dapat dipinjam: 0)
Tandon:
tidak ada
Lihat Detail Induk
Isi artikel
This paper provides an introduction to support vector machines, kernel Fisher discriminant analysis, and kernel principal component analysis, as examples for successful kernel - based learning methods. We first give a short background about Vapnik - Chervonenkis theory and kernel feature spaces and then proceed to kernel based learning in supervised and unsupervised scenarios including practical and algorithmic considerations. We illustrate the usefulness of kernel algorithms by discussing applications such as optical character recognition and DNA analysis.
Opini Anda
Klik untuk menuliskan opini Anda tentang koleksi ini!
Kembali
Process time: 0.015625 second(s)