Anda belum login :: 02 May 2025 14:48 WIB
Home
|
Logon
Hidden
»
Administration
»
Collection Detail
Detail
Clustering of The Self-Organizing Map
Oleh:
Vesanto, J.
;
Alhoniemi, E.
Jenis:
Article from Journal - ilmiah internasional
Dalam koleksi:
IEEE Transactions on Neural Networks vol. 11 no. 3 (2000)
,
page 586-600.
Topik:
CLUSTERING
;
clustering
;
self - organizing
;
map
Ketersediaan
Perpustakaan Pusat (Semanggi)
Nomor Panggil:
II36.4
Non-tandon:
1 (dapat dipinjam: 0)
Tandon:
tidak ada
Lihat Detail Induk
Isi artikel
The self - organizing map (SOM) is an excellent tool in exploratory phase of data mining. It projects input space on prototypes of a low - dimensional regular grid that can be effectively utilized to visualize and explore properties of the data. When the number of SOM units is large, to facilitate quantitative analysis of the map and the data, similar units need to be grouped, i. e., clustered. In this paper, different approaches to clustering of the SOM are considered. In particular, the use of hierarchical agglomerative clustering and partitive clustering using K - means are investigated. The two - stage procedure - first using SOM to produce the prototypes that are then clustered in the second stage - is found to perform well when compared with direct clustering of the data and to reduce the computation time.
Opini Anda
Klik untuk menuliskan opini Anda tentang koleksi ini!
Kembali
Process time: 0.015625 second(s)