Anda belum login :: 03 Jun 2025 19:41 WIB
Detail
ArtikelQuantizing for Minimum Average Misclassification Risk  
Oleh: Diamantini, C. ; Spalvieri, A.
Jenis: Article from Journal - ilmiah internasional
Dalam koleksi: IEEE Transactions on Neural Networks vol. 9 no. 1 (1998), page 174-182.
Topik: risks; quantizing; minimum average; misclassification; risk
Ketersediaan
  • Perpustakaan Pusat (Semanggi)
    • Nomor Panggil: II36.3
    • Non-tandon: 1 (dapat dipinjam: 0)
    • Tandon: tidak ada
    Lihat Detail Induk
Isi artikelIn pattern classification, a decision rule is a labeled partition of the observation space, where labels represent classes. A way to establish a decision rule is to attach a label to each code vector of a vector quantizer (VQ). When a labeled VQ is adopted as a classifier, we have to design it in such a way that high classification performance is obtained by a given number of code vectors. In this paper we propose a learning algorithm which optimizes the position of labeled code vectors in the observation space under the minimum average misclassification risk criterion.
Opini AndaKlik untuk menuliskan opini Anda tentang koleksi ini!

Kembali
design
 
Process time: 0.015625 second(s)