Anda belum login :: 06 Jun 2025 11:39 WIB
Home
|
Logon
Hidden
»
Administration
»
Collection Detail
Detail
Quantum Neural Networks (QNN's) : Inherently Fuzzy Feedforward Neural Networks
Oleh:
Purushothaman, G.
;
Karayiannis, N. B.
Jenis:
Article from Journal - ilmiah internasional
Dalam koleksi:
IEEE Transactions on Neural Networks vol. 8 no. 3 (1997)
,
page 679-683.
Topik:
quantum mechanics
;
quantum neural networks
;
QNN
;
fuzzy
;
neural networks
Ketersediaan
Perpustakaan Pusat (Semanggi)
Nomor Panggil:
II36.2
Non-tandon:
1 (dapat dipinjam: 0)
Tandon:
tidak ada
Lihat Detail Induk
Isi artikel
This paper introduces quantum neural networks (QNN s), a class of feedforward neural networks (FFNN s) inherently capable of estimating the structure of a feature space in the form of fuzzy sets. The hidden units of these networks develop quantized representations of the sample information provided by the training data set in various graded levels of certainty. Unlike other approaches attempting to merge fuzzy logic and neural networks, QNN s can be used in pattern classification problems without any restricting assumptions such as the availability of a priori knowledge or desired membership profile, convexity of classes, a limited number of classes, etc. Experimental results presented here show that QNN s are capable of recognizing structures in data, a property that conventional FFNN s with sigmoidal hidden units lack.
Opini Anda
Klik untuk menuliskan opini Anda tentang koleksi ini!
Kembali
Process time: 0.015625 second(s)