Anda belum login :: 01 May 2025 16:44 WIB
Detail
ArtikelA New Recurrent Neural-Network Architecture for Visual Pattern Recognition  
Oleh: Lee, Seong-Whan ; Song, Hee-Heon
Jenis: Article from Journal - ilmiah internasional
Dalam koleksi: IEEE Transactions on Neural Networks vol. 8 no. 2 (1997), page 331-340.
Topik: network; neural - network; architecture; visual pattern; recognition
Ketersediaan
  • Perpustakaan Pusat (Semanggi)
    • Nomor Panggil: II36.2
    • Non-tandon: 1 (dapat dipinjam: 0)
    • Tandon: tidak ada
    Lihat Detail Induk
Isi artikelWe propose a new type of recurrent neural - network architecture, in which each output unit is connected to itself and is also fully connected to other output units and all hidden units. The proposed recurrent neural network differs from Jordan's and Elman's recurrent neural networks with respect to function and architecture, because it has been originally extended from being a mere multilayer feedforward neural network, to improve discrimination and generalization powers. We also prove the convergence properties of the learning algorithm in the proposed recurrent neural network, and analyze the performance of the proposed recurrent neural network by performing recognition experiments with the totally unconstrained handwritten numeric database of Concordia University, Montreal, Canada. Experimental results have confirmed that the proposed recurrent neural network improves discrimination and generalization powers in the recognition of visual patterns.
Opini AndaKlik untuk menuliskan opini Anda tentang koleksi ini!

Kembali
design
 
Process time: 0.015625 second(s)