Anda belum login :: 19 Apr 2025 11:20 WIB
Home
|
Logon
Hidden
»
Administration
»
Collection Detail
Detail
Adaptive Color Segmentation - A Comparison of Neural and Statistical Methods
Oleh:
Ritter, H.
;
Littmann, E.
Jenis:
Article from Journal - ilmiah internasional
Dalam koleksi:
IEEE Transactions on Neural Networks vol. 8 no. 1 (1997)
,
page 175-185.
Topik:
segmentation
;
adaptive
;
color segmentation
;
neural
;
statistical methods
Ketersediaan
Perpustakaan Pusat (Semanggi)
Nomor Panggil:
II36.2
Non-tandon:
1 (dapat dipinjam: 0)
Tandon:
tidak ada
Lihat Detail Induk
Isi artikel
With the availability of more powerful computers it is nowadays possible to perform pixel based operations on real camera images even in the full color space. New adaptive classification tools like neural networks make it possible to develop special - purpose object detectors that can segment arbitrary objects in real images with a complex distribution in the feature space after training with one or several previously labeled image (s). The paper focuses on a detailed comparison of a neural approach based on local linear maps (LLM s) to a classifier based on normal distributions. The proposed adaptive segmentation method uses local color information to estimate the membership probability in the object, respectively, background class. The method is applied to the recognition and localization of human hands in color camera images of complex laboratory scenes.
Opini Anda
Klik untuk menuliskan opini Anda tentang koleksi ini!
Kembali
Process time: 0.015625 second(s)