Anda belum login :: 29 Apr 2025 17:01 WIB
Home
|
Logon
Hidden
»
Administration
»
Collection Detail
Detail
The Min-Max Function Differentiation and Training of Fuzzy Neural Networks
Oleh:
Zhang, Xinghu
;
Hang, Chang-Chieh
;
Tan, Shaohua
;
Wang, Pei-Zhuang
Jenis:
Article from Journal - ilmiah internasional
Dalam koleksi:
IEEE Transactions on Neural Networks vol. 7 no. 5 (1996)
,
page 1139-1150.
Topik:
fuzzy neural networks
;
min - max function
;
training
;
fuzzy neural networks
Ketersediaan
Perpustakaan Pusat (Semanggi)
Nomor Panggil:
II36.1
Non-tandon:
1 (dapat dipinjam: 0)
Tandon:
tidak ada
Lihat Detail Induk
Isi artikel
This paper discusses the ? - rule and training of min - max neural networks by developing a differentiation theory for min - max functions, the functions containing min (?) and / or max (V) operations. We first prove that under certain conditions all min - max functions are continuously differentiable almost everywhere in the real number field & Rfr; and derive the explicit formulas for the differentiation. These results are the basis for developing the ? - rule for the training of min - max neural networks. The convergence of the new ? - rule is proved theoretically using the stochastic theory, and is demonstrated with a simulation example.
Opini Anda
Klik untuk menuliskan opini Anda tentang koleksi ini!
Kembali
Process time: 0 second(s)