Anda belum login :: 21 Apr 2025 03:02 WIB
Home
|
Logon
Hidden
»
Administration
»
Collection Detail
Detail
Fast Probabilistic Self-Structuring of Generalized Single-Layer Networks
Oleh:
Garvin, A. D. M.
;
Morris, R. D.
Jenis:
Article from Journal - ilmiah internasional
Dalam koleksi:
IEEE Transactions on Neural Networks vol. 7 no. 4 (1996)
,
page 881-888.
Topik:
probabilistic thinking
;
probabilistic
;
self - structuring
;
single - layer networks
Ketersediaan
Perpustakaan Pusat (Semanggi)
Nomor Panggil:
II36.1
Non-tandon:
1 (dapat dipinjam: 0)
Tandon:
tidak ada
Lihat Detail Induk
Isi artikel
An algorithm is presented for determining the subset of the basis functions of a generalized single - layer network (GSLN) needed to solve the classification problem defined by the training data. A Markov chain Monte Carlo sampling technique is used to traverse the space of models having a low sum squared error (SSE). The frequency of a term's inclusion is an indication of its importance to the classifier. Fast, iterative updates can be used for the matrix calculations needed. Theoretical results for the required length of the chain needed to obtain good discrimination between functions fitting the data and those modeling the added noise are given, and these are confirmed by experiment.
Opini Anda
Klik untuk menuliskan opini Anda tentang koleksi ini!
Kembali
Process time: 0.015625 second(s)