Anda belum login :: 18 Apr 2025 09:05 WIB
Detail
ArtikelNonparametric Estimation and Classification Using Radial Basis Function Nets and Empirical Risk Minimization  
Oleh: Krzyzak, A. ; Linder, T. ; Lugosi, C.
Jenis: Article from Journal - ilmiah internasional
Dalam koleksi: IEEE Transactions on Neural Networks vol. 7 no. 2 (1996), page 475-487.
Topik: risks; non parametric; estimation; classification; radial basis; risk minimization
Ketersediaan
  • Perpustakaan Pusat (Semanggi)
    • Nomor Panggil: II36.1
    • Non-tandon: 1 (dapat dipinjam: 0)
    • Tandon: tidak ada
    Lihat Detail Induk
Isi artikelStudies convergence properties of radial basis function (RBF) networks for a large class of basis functions, and reviews the methods and results related to this topic. The authors obtain the network parameters through empirical risk minimization. The authors show the optimal nets to be consistent in the problem of nonlinear function approximation and in non parametric classification. For the classification problem the authors consider two approaches : the selection of the RBF classifier via nonlinear function estimation and the direct method of minimizing the empirical error probability. The tools used in the analysis include distribution - free nonasymptotic probability inequalities and covering numbers for classes of functions.
Opini AndaKlik untuk menuliskan opini Anda tentang koleksi ini!

Kembali
design
 
Process time: 0 second(s)