Anda belum login :: 18 Apr 2025 09:05 WIB
Home
|
Logon
Hidden
»
Administration
»
Collection Detail
Detail
Nonparametric Estimation and Classification Using Radial Basis Function Nets and Empirical Risk Minimization
Oleh:
Krzyzak, A.
;
Linder, T.
;
Lugosi, C.
Jenis:
Article from Journal - ilmiah internasional
Dalam koleksi:
IEEE Transactions on Neural Networks vol. 7 no. 2 (1996)
,
page 475-487.
Topik:
risks
;
non parametric
;
estimation
;
classification
;
radial basis
;
risk minimization
Ketersediaan
Perpustakaan Pusat (Semanggi)
Nomor Panggil:
II36.1
Non-tandon:
1 (dapat dipinjam: 0)
Tandon:
tidak ada
Lihat Detail Induk
Isi artikel
Studies convergence properties of radial basis function (RBF) networks for a large class of basis functions, and reviews the methods and results related to this topic. The authors obtain the network parameters through empirical risk minimization. The authors show the optimal nets to be consistent in the problem of nonlinear function approximation and in non parametric classification. For the classification problem the authors consider two approaches : the selection of the RBF classifier via nonlinear function estimation and the direct method of minimizing the empirical error probability. The tools used in the analysis include distribution - free nonasymptotic probability inequalities and covering numbers for classes of functions.
Opini Anda
Klik untuk menuliskan opini Anda tentang koleksi ini!
Kembali
Process time: 0 second(s)