Anda belum login :: 05 Jun 2025 04:31 WIB
Home
|
Logon
Hidden
»
Administration
»
Collection Detail
Detail
Measurement of Interstitial Convective Heat Transfer and Frictional Drag for Flow Across Metal Foams
Oleh:
J.-J. Hwang
;
G.-J. Hwang
;
R.-H. Yeh
;
C.-H. Chao
Jenis:
Article from Bulletin/Magazine
Dalam koleksi:
Journal of Heat Transfer vol. 124 no. 1 (Feb. 2002)
,
page 120-129.
Topik:
METAL
;
measurement
;
interstitial convective
;
heat transfer
;
frictional drag
;
flow
;
metal foams
Ketersediaan
Perpustakaan Pusat (Semanggi)
Nomor Panggil:
JJ90.3
Non-tandon:
1 (dapat dipinjam: 0)
Tandon:
tidak ada
Lihat Detail Induk
Isi artikel
Convective heat transfer and friction drag in a duct inserted with aluminum foams have been studied experimentally. The combined effects of foam porosity (e = 0.7, 0.8, and 0.95) and flow Reynolds number (1900 <= Re <= 7800) are examined. Frictional drags for flow across the aluminum foam are measured by pressure taps, while interstitial heat transfer coefficients in the aluminum foam are determined using a transient single - blow technique with a thermal non - equilibrium two - equation model. Solid material temperature distribution is further measured for double check of the heat transfer results. To understand the frictional drag mechanisms, smoke - wire flow visualization is conducted in the aluminum - foam ducts. Results show that both the friction factor and the volumetric heat transfer coefficient increase with decreasing the foam porosity at a fixed Reynolds number. In addition, the aluminum foam of e = 0.8 has the best thermal performance under the same pumping power constraint among the three aluminum foams investigated. Finally, empirical correlations for pore Nusselt number are developed in terms of pore Reynolds number under various foam porosities.
Opini Anda
Klik untuk menuliskan opini Anda tentang koleksi ini!
Kembali
Process time: 0 second(s)