Anda belum login :: 28 Apr 2025 16:21 WIB
Detail
ArtikelOn The Construction and Training of Reformulated Radial Basis Function Neural Networks  
Oleh: Karayiannis, N. B. ; Randolph-Gips, M. M.
Jenis: Article from Journal - ilmiah internasional
Dalam koleksi: IEEE Transactions on Neural Networks vol. 14 no. 4 (Jul. 2003), page 835-846.
Topik: TRAINING; construction; training; radial basis function neural networks
Ketersediaan
  • Perpustakaan Pusat (Semanggi)
    • Nomor Panggil: II36.8
    • Non-tandon: 1 (dapat dipinjam: 0)
    • Tandon: tidak ada
    Lihat Detail Induk
Isi artikelPresents a systematic approach for constructing reformulated radial basis function (RBF) neural networks, which was developed to facilitate their training by supervised learning algorithms based on gradient descent. This approach reduces the construction of radial basis function models to the selection of admissible generator functions. The selection of generator functions relies on the concept of the blind spot, which is introduced in the paper. The paper also introduces a new family of reformulated radial basis function neural networks, which are referred to as cosine radial basis functions. Cosine radial basis functions are constructed by linear generator functions of a special form and their use as similarity measures in radial basis function models is justified by their geometric interpretation. A set of experiments on a variety of datasets indicate that cosine radial basis functions outperform considerably conventional radial basis function neural networks with Gaussian radial basis functions. Cosine radial basis functions are also strong competitors to existing reformulated radial basis function models trained by gradient descent and feedforward neural networks with sigmoid hidden units.
Opini AndaKlik untuk menuliskan opini Anda tentang koleksi ini!

Kembali
design
 
Process time: 0 second(s)