Anda belum login :: 21 Apr 2025 08:42 WIB
Home
|
Logon
Hidden
»
Administration
»
Collection Detail
Detail
Fast Minimization of Structural Risk By Nearest Neighbor Rule
Oleh:
Krim, H.
;
Karacali, B.
Jenis:
Article from Journal - ilmiah internasional
Dalam koleksi:
IEEE Transactions on Neural Networks vol. 14 no. 1 (Jan. 2003)
,
page 127-137.
Topik:
risks
;
fast minimization
;
risk
;
neighbor rule
Ketersediaan
Perpustakaan Pusat (Semanggi)
Nomor Panggil:
II36.8
Non-tandon:
1 (dapat dipinjam: 0)
Tandon:
tidak ada
Lihat Detail Induk
Isi artikel
In this paper, we present a novel nearest neighbor rule - based implementation of the structural risk minimization principle to address a generic classification problem. We propose a fast reference set thinning algorithm on the training data set similar to a support vector machine (SVM) approach. We then show that the nearest neighbor rule based on the reduced set implements the structural risk minimization principle, in a manner which does not involve selection of a convenient feature space. Simulation results on real data indicate that this method significantly reduces the computational cost of the conventional SVM s, and achieves a nearly comparable test error performance.
Opini Anda
Klik untuk menuliskan opini Anda tentang koleksi ini!
Kembali
Process time: 0.015625 second(s)