Anda belum login :: 05 Jun 2025 04:48 WIB
Home
|
Logon
Hidden
»
Administration
»
Collection Detail
Detail
Introduction to Five Data Clustering Algorithms
Oleh:
Moertini, Veronica S.
Jenis:
Article from Bulletin/Magazine
Dalam koleksi:
Integral: Majalah Ilmiah Matematika dan Ilmu Pengetahuan Alam vol. 7 no. 2 (Oct. 2002)
,
page 87-96.
Topik:
algorithms
;
clustering algorithms
Ketersediaan
Perpustakaan Pusat (Semanggi)
Nomor Panggil:
II48.1
Non-tandon:
1 (dapat dipinjam: 0)
Tandon:
tidak ada
Lihat Detail Induk
Isi artikel
Clustering is one of the primary tasks of data mining. Over the years, many methods have been developed for clustering patterns. Each method can have its own technique (i. e. partitioning or hierarchical), mode (on - line or off - line), approach (fuzzy or crisp clustering), or special purpose (i. e. for sequential data set, very large database, etc). This paper aims to introduce the most representative algorithms used in off line mode that apply crisp or fuzzy approach. The algorithms are K - means, fuzzy C - means (FCM), mountain, subtractive and psFCM. The implementation of two of the algorithms using matlab is provided in the appendix.
Opini Anda
Klik untuk menuliskan opini Anda tentang koleksi ini!
Kembali
Process time: 0.015625 second(s)