Anda belum login :: 06 Jun 2025 13:52 WIB
Home
|
Logon
Hidden
»
Administration
»
Collection Detail
Detail
Heat Transfer in Friction Stir Welding-Experimental and Numerical Studies
Oleh:
Tang, W.
;
Qi, X.
;
Chao, Yuh J.
Jenis:
Article from Journal - ilmiah internasional
Dalam koleksi:
Journal of Manufacturing Science and Engineering vol. 125 no. 1 (Feb. 2003)
,
page 138-145.
Topik:
heat transfer
;
heat transfer
;
friction stir welding
;
experimental
;
numerical studies
Ketersediaan
Perpustakaan Pusat (Semanggi)
Nomor Panggil:
JJ93.4
Non-tandon:
1 (dapat dipinjam: 0)
Tandon:
tidak ada
Lihat Detail Induk
Isi artikel
In the friction stir welding (FSW) process, heat is generated by friction between the tool and the workpiece. This heat flows into the workpiece as well as the tool. The amount of heat conducted into the workpiece determines the quality of the weld, residual stress and distortion of the workpiece. The amount of the heat that flows to the tool dictates the life of the tool and the capability of the tool for the joining process. In this paper, we formulate the heat transfer of the FSW process into two boundary value problems (BVP) - a steady state BVP for the tool and a transient BVP for the workpiece. To quantify the physical values of the process the temperatures in the workpiece and the tool are measured during FSW. Using the measured transient temperature fields finite element numerical analyses were performed to determine the heat flux generated from the friction to the workpiece and the tool. Detailed temperature distributions in the workpiece and the tool are presented. Discussions relative to the FSW process are then given. In particular, the results show that : (1) the majority of the heat generated from the friction, i. e., about 95 %, is transferred into the workpiece and only 5 % flows into the tool and (2) the fraction of the rate of plastic work dissipated as heat is about 80 %.
Opini Anda
Klik untuk menuliskan opini Anda tentang koleksi ini!
Kembali
Process time: 0.015625 second(s)