Anda belum login :: 26 Apr 2025 12:50 WIB
Detail
ArtikelMultiple imputation for missing data:A cautionary tale  
Oleh: Allison, Paul D.
Jenis: Article from Journal - ilmiah internasional
Dalam koleksi: Sociological Methods & Research (SMR) vol. 28 no. 03 (Feb. 2000), page 301-309.
Topik: regression coefficients; Multiple imputation; Missing data
Ketersediaan
  • Perpustakaan PKPM
    • Nomor Panggil: S28
    • Non-tandon: 1 (dapat dipinjam: 0)
    • Tandon: tidak ada
    Lihat Detail Induk
Isi artikelTwo algorithms for producing multiple imputations for missing data are evaluated with simulated data. Software using a propensity score classifier with the approximate Bayesian bootstrap produces badly biased estimates of regression coefficients when data on predictor variables are missing at random or missing completely at random. On the other hand, a regression-based method employing the data augmentation algorithm produces estimates with little or no bias.
Opini AndaKlik untuk menuliskan opini Anda tentang koleksi ini!

Kembali
design
 
Process time: 0.015625 second(s)