Anda belum login :: 26 Apr 2025 12:50 WIB
Home
|
Logon
Hidden
»
Administration
»
Collection Detail
Detail
Multiple imputation for missing data:A cautionary tale
Oleh:
Allison, Paul D.
Jenis:
Article from Journal - ilmiah internasional
Dalam koleksi:
Sociological Methods & Research (SMR) vol. 28 no. 03 (Feb. 2000)
,
page 301-309.
Topik:
regression coefficients
;
Multiple imputation
;
Missing data
Ketersediaan
Perpustakaan PKPM
Nomor Panggil:
S28
Non-tandon:
1 (dapat dipinjam: 0)
Tandon:
tidak ada
Lihat Detail Induk
Isi artikel
Two algorithms for producing multiple imputations for missing data are evaluated with simulated data. Software using a propensity score classifier with the approximate Bayesian bootstrap produces badly biased estimates of regression coefficients when data on predictor variables are missing at random or missing completely at random. On the other hand, a regression-based method employing the data augmentation algorithm produces estimates with little or no bias.
Opini Anda
Klik untuk menuliskan opini Anda tentang koleksi ini!
Kembali
Process time: 0.015625 second(s)