Anda belum login :: 16 Apr 2025 21:10 WIB
Detail
ArtikelIncremental Unsupervised Training for University Lecture Recognition  
Oleh: Heck, Michael ; Stuker, Sebastian ; Sakti, Sakriani ; Waibel, Alex ; Nakamura, Satoshi
Jenis: Article from Proceeding
Dalam koleksi: Proceedings of the 10th International Workshop on Spoken Language Translation (IWSLT 2013), Heidelberg, Germany: Dec. 5-6, 2013
Fulltext: Incremental Unsupervised Training.pdf (11.78MB)
Isi artikelIn this paper we describe our work on unsupervised adaptation of the acoustic model of our simultaneous lecture translation system. We trained a speaker independent acoustic model, with which we produce automatic transcriptions of new lectures in order to improve the system for a specific lecturer. We compare our results against a model that was trained in a supervised way on an exact manual transcription. We examine four different ways of processing the decoder outputs of the automatic transcription with respect to the treatment of pronunciation variants and noise words. We will show that, instead of fixating the latter informations in the transcriptions, it is of advantage to let the Viterbi algorithm during training decide which pronunciations to use and where to insert which noise words. Further, we utilize word level posterior probabilities obtained during decoding by weighting and thresholding the words of a transcription. Index Terms: lecture translation, spoken language translation, simultaneous translation.
Opini AndaKlik untuk menuliskan opini Anda tentang koleksi ini!

Kembali
design
 
Process time: 0.015625 second(s)