Anda belum login :: 24 Apr 2025 02:41 WIB
Detail
ArtikelAsymmetric Kernel Regression  
Oleh: Tieu, A. K. ; Mackenzie, M.
Jenis: Article from Journal - ilmiah internasional
Dalam koleksi: IEEE Transactions on Neural Networks vol. 15 no. 2 (Mar. 2004), page 276-282.
Topik: kernel estimator; asymmetric; kernel regression
Ketersediaan
  • Perpustakaan Pusat (Semanggi)
    • Nomor Panggil: II36.10
    • Non-tandon: 1 (dapat dipinjam: 0)
    • Tandon: tidak ada
    Lihat Detail Induk
Isi artikelKernel regression is one model that has been applied to explain or design radial - basis neural networks. Practical application of the kernel regression method has shown that bias errors caused by the boundaries of the data can seriously effect the accuracy of this type of regression. This paper investigates the correction of boundary error by substituting an asymmetric kernel function for the symmetric kernel function at data points close to the boundary. The asymmetric kernel function allows a much closer approach to the boundary to be achieved without adversely effecting the noise - filtering properties of the kernel regression.
Opini AndaKlik untuk menuliskan opini Anda tentang koleksi ini!

Kembali
design
 
Process time: 0 second(s)