Anda belum login :: 17 Apr 2025 06:33 WIB
Home
|
Logon
Hidden
»
Administration
»
Collection Detail
Detail
Cognitive Artificial-Intelligence for Rogers Ratio Dissolved Gas Analysis (article of International Journal of Advanced Science and Technology Vol. 29 No. 08 2020)
Bibliografi
Author:
Bachri, Karel Octavianus
;
Tajuddin Nur
;
Khayam, Umar
;
Soedjarno, Bambang Anggoro
;
Sumari, Arwin Datumaya Wahyudi
Topik:
Cognitive Artificial-Intelligence
;
Rogers Ratio
;
DGA Interpretation
;
Information Fusion
;
JABFUNG-FT-KOB-2023-20
Bahasa:
(EN )
Penerbit:
Science and Engineering Research Support Society
Tempat Terbit:
Tasmania
Tahun Terbit:
2020
Jenis:
Article - diterbitkan di jurnal ilmiah internasional
Fulltext:
B20_19259-Article_Text-28876-1-10-20200529.pdf
(785.97KB;
2 download
)
[
Informasi yang berkaitan dengan koleksi ini di internet
]
Abstract
This paper discusses Cognitive Artificial Intelligence (CAI) method for Dissolved Gas Analysis (DGA) interpretation adopting Rogers Ratio method. CAI grows its knowledge through the interaction with its surroundings. Informations are extracted from multiple sources of data and are then fused to obtain new information with Degree of Certainty (DoC). The new information indicates the fault occurred before the observation took place. The proposed method CAI is validated using the IEC TC10 dataset and compared to the conventional Artificial Intelligence Fuzzy Inference System (FIS) and Artificial Neural Network (ANN). Compared to other methods, CAI performs the most accuracy in identifying Low-Energy Discharge (LE) and Thermal-High (TH), while FIS performs the most accuracy in identifying High-Energy Discharge (HE), and ANN performs the most accuracy in identifying Partial Discharge (PD) and Thermal-Low (TL).
Opini Anda
Klik untuk menuliskan opini Anda tentang koleksi ini!
Lihat Sejarah Pengadaan
Konversi Metadata
Kembali
Process time: 0.078125 second(s)