Anda belum login :: 04 Jun 2025 20:03 WIB
Detail
ArtikelTwo-class Classification With Various Caharacteristics Based on Kernel Principal Component Analysis and Support Vector Machines  
Oleh: Timotius, Ivanna Kristianti ; Setyawan, Iwan ; Febrianto, Andreas Ardian
Jenis: Article from Journal - ilmiah nasional - terakreditasi DIKTI
Dalam koleksi: Makara Journal of Technology vol. 15 no. 1 (Apr. 2011), page 96-100.
Topik: Characteristic; Classification; Face Recognition; Kernel Principal Component Analysis; Support Vector Machines
Ketersediaan
  • Perpustakaan Pusat (Semanggi)
    • Nomor Panggil: MM64.4
    • Non-tandon: 1 (dapat dipinjam: 0)
    • Tandon: tidak ada
    Lihat Detail Induk
Isi artikelTwo class pattern classification problems appeared in many applications. In some applications, the characteristic of the members in a class is dissimilar. This paper proposed a classification system for this problem. The proposed system was developed based on the combination of kernel principal component analysis (KPCA) and support vector machines (SVMs). This system has been implemented in a two class face recognition problem. The average of the classification rate in this face image classification is 82.5%.
Opini AndaKlik untuk menuliskan opini Anda tentang koleksi ini!

Kembali
design
 
Process time: 0.015625 second(s)