Anda belum login :: 03 Jun 2025 09:20 WIB
Detail
BukuAnalysis of Artificial Neural Network Backpropagation Using Conjugate Gradient Fletcher Reeves In The Predicting Process (article of Journal of Physics: Conference Series, Volume 930, conference 1)
Bibliografi
Author: Wanto, Anjar ; Zarlis, Muhammad ; Sawaluddin ; Hartama, Dedy ; Hardinata, Jaya Tata ; Silaban, Herlan F.
Bahasa: (EN )    
Penerbit: IOP Publishing     Tempat Terbit: Bristol    Tahun Terbit: 2018    
Jenis: Article - diterbitkan di jurnal ilmiah internasional
Fulltext: Wanto_2017_J._Phys.%3A_Conf._Ser._930_012018.pdf (322.43KB; 0 download)
[Informasi yang berkaitan dengan koleksi ini di internet]
Abstract
Backpropagation is a good artificial neural network algorithm used to predict, one of which is to predict the rate of Consumer Price Index (CPI) based on the foodstuff sector. While conjugate gradient fletcher reeves is a suitable optimization method when juxtaposed with backpropagation method, because this method can shorten iteration without reducing the quality of training and testing result. Consumer Price Index (CPI) data that will be predicted to come from the Central Statistics Agency (BPS) Pematangsiantar. The results of this study will be expected to contribute to the government in making policies to improve economic growth. In this study, the data obtained will be processed by conducting training and testing with artificial neural network backpropagation by using parameter learning rate 0,01 and target error minimum that is 0.001-0,09. The training network is built with binary and bipolar sigmoid activation functions. After the results with backpropagation are obtained, it will then be optimized using the conjugate gradient fletcher reeves method by conducting the same training and testing based on 5 predefined network architectures. The result, the method used can increase the speed and accuracy result.
Opini AndaKlik untuk menuliskan opini Anda tentang koleksi ini!

Lihat Sejarah Pengadaan  Konversi Metadata   Kembali
design
 
Process time: 0.09375 second(s)