Anda belum login :: 03 May 2025 08:27 WIB
Detail
ArtikelRegulation of glutamate metabolism and insulin secretion by glutamate dehydrogenase in hypoglycemic children  
Oleh: Stanley, Charles A.
Jenis: Article from Journal - ilmiah internasional
Dalam koleksi: The American Journal of Clinical Nutrition vol. 90 no. 03(S) (Sep. 2009), page 862S-866S.
Topik: glutamate; metabolism; insulin; glutamate dehydrogenase; hypoglycemic
Ketersediaan
  • Perpustakaan FK
    • Nomor Panggil: A07.K.2009.03
    • Non-tandon: 1 (dapat dipinjam: 0)
    • Tandon: tidak ada
    Lihat Detail Induk
Isi artikelIn addition to its extracellular roles as a neurotransmitter/sensory molecule, glutamate serves important intracellular signaling functions via its metabolism through glutamate dehydrogenase (GDH). GDH is a mitochondrial matrix enzyme that catalyzes the oxidative deamination of glutamate to {alpha}-ketoglutarate in a limited number of tissues in humans, including the liver, the kidney, the brain, and the pancreatic islets. GDH activity is subject to complex regulation by negative (GTP, palmitoyl-coenzyme A) and positive (ADP, leucine) allosteric effectors. This complex regulation allows GDH activity to be modulated by changes in energy state and amino acid availability. The importance of GDH regulation has been highlighted by the discovery of a novel hypoglycemic disorder in children, the hyperinsulinism-hyperammonemia syndrome, which is caused by dominantly expressed, activating mutations of the enzyme that impair its inhibition by GTP. Affected children present in infancy with hypoglycemic seizures after brief periods of fasting or the ingestion of a high-protein meal. Patients have characteristic persistent 3- to 5-fold elevations of blood ammonia concentrations but do not display the usual neurologic symptoms of hyperammonemia. The mutant GDH enzyme shows impaired responses to GTP inhibition. Isolated islets from mice that express the mutant GDH in pancreatic ß cells show an increased rate of glutaminolysis, increased insulin release in response to glutamine, and increased sensitivity to leucine-stimulated insulin secretion. The novel hyperinsulinism-hyperammonemia syndrome indicates that GDH-catalyzed glutamate metabolism plays important roles in 3 tissues: in ß cells, the regulation of amino acid–stimulated insulin secretion; in hepatocytes, the modulation of amino acid catabolism and ammoniagenesis; and in brain neurons, the maintenance of glutamate neurotransmitter concentrations.
Opini AndaKlik untuk menuliskan opini Anda tentang koleksi ini!

Kembali
design
 
Process time: 0 second(s)