Anda belum login :: 19 Apr 2025 09:54 WIB
Home
|
Logon
Hidden
»
Administration
»
Collection Detail
Detail
A Multidiscipline And Multi-Rate Modeling Framework For Planar Solid-Oxide-Fuel-Cell Based Power-Conditioning System For Vehicular APU
Oleh:
Mazumder, Sudip K.
;
Pradhan, Sanjay
;
Hartvigsen, Joseph
;
Rancruel, Diego
;
Spakovsky, Michael R. von
;
Khaleel, Moe
Jenis:
Article from Journal - ilmiah internasional
Dalam koleksi:
Simulation vol. 84 no. 8 (Aug. 2008)
,
page 413-426.
Topik:
Modeling
;
planar solid-oxide fuel cell (SOFC)
;
auxiliary power unit (APU)
;
power electronics
;
power conditioning
;
balance of plant (BOP)
Fulltext:
413.pdf
(1.91MB)
Isi artikel
A numerical modeling framework for planar solid-oxide fuel cell (PSOFC) based vehicular auxiliary power unit (APU) is developed. The power-conditioning system (PCS) model comprises the comprehensive transient models of PSOFC, balance-of-plant and power-electronics subsystems (BOPS and PES, respectively) and application load (AL). It can be used for resolving the interactions among PSOFC, BOPS, PES and AL, control design and system optimization and studying fuel-cell durability. The PCS model has several key properties including: (i) it can simultaneously predict spatial as well as temporal dynamics (ii) it has two levels of abstraction: comprehensive (for detailed dynamics) and reduced-order (for fast simulation) and (iii) the fast-simulation model can be implemented completely in Simulink/Matlab environment, thereby significantly reducing the cost as well as time and provides the avenue for real-time simulation and integration with vehicular power-train models employing the widely used ADVISOR. The computational overhead and accuracy of the fast-simulation and comprehensive models are compared. Significant savings in time compared to using the former were obtained, without compromising accuracy.
Opini Anda
Klik untuk menuliskan opini Anda tentang koleksi ini!
Kembali
Process time: 0.03125 second(s)