Anda belum login :: 09 Jun 2025 02:43 WIB
Detail
BukuMachine Learning in DNA Microarray Analysis for Cancer Classification
Bibliografi
Author: Cho, Sung-Bae ; Won, Hong-Hee
Topik: Biological Data Mining; Feature Selection; Classification; Gene Expression Profile; MLP; KNN; SVM; SASOM; Ensemble Classifier; Microarray
Bahasa: (EN )    
Penerbit: Australian Computer Society (ACS)     Tempat Terbit: Sydney    Tahun Terbit: 2003    
Jenis: Papers/Makalah
Fulltext: p189-cho.pdf (396.04KB; 2 download)
Abstract
The development of microarray technology has supplied a large volume of data to many fields. In particular, it has been applied to prediction and diagnosis of cancer, so that it expectedly helps us to exactly predict and diagnose cancer. To precisely classify cancer we have to select genes related to cancer because extracted genes from microarray have many noises. In this paper, we attempt to explore many features and classifiers using three benchmark datasets to systematically evaluate the performances of the feature selection methods and machine learning classifiers. Three benchmark datasets are Leukemia cancer dataset, Colon cancer dataset and Lymphoma cancer data set. Pearson’s and Spearman’s correlation coefficients, Euclidean distance, cosine coefficient, information gain, mutual information and signal to noise ratio have been used for feature selection. Multi-layer perceptron, k-nearest neighbour, support vector machine and structure adaptive self–organizing map have been used for classification. Also, we have combined the classifiers to improve the performance of classification. Experimental results show that the ensemble with several basis classifiers produces the best recognition rate on the benchmark dataset.
Opini AndaKlik untuk menuliskan opini Anda tentang koleksi ini!

Lihat Sejarah Pengadaan  Konversi Metadata   Kembali
design
 
Process time: 0.296875 second(s)