Anda belum login :: 23 Apr 2025 01:02 WIB
Home
|
Logon
Hidden
»
Administration
»
Collection Detail
Detail
Perbandingan Metode Berbasis Model Dengan Metode K-Mean Dalam Analisis Gugus
Oleh:
Pardede, Timbul
Jenis:
Article from Journal - ilmiah nasional - tidak terakreditasi DIKTI
Dalam koleksi:
SIGMA: Jurnal Sains dan teknologi vol. 11 no. 2 (Jul. 2008)
,
page 157-166.
Topik:
K-mean Clustering Method
;
Model-Based Clustering Method
;
Expectation-Maximization Algorithm
;
Bayesian Information Criterion
Ketersediaan
Perpustakaan Pusat (Semanggi)
Nomor Panggil:
SS25.6
Non-tandon:
1 (dapat dipinjam: 0)
Tandon:
tidak ada
Lihat Detail Induk
Isi artikel
K-mean method is clustering methiod in which grouping techniques are based only distance measure among observed objects, without considering statistical aspects. Model-based clustering is a method that uses statistical aspects, as its theoretical basis i.e. probabilitt maximum criterion. This model has several variations with a variety of geometrical characteristics obtained by mean Gauss component. Data partition is conducted by utilizing expectation-maximization (EM) algorithm. By using Bayesian Information Criterion (BIC) the best model is then namely model-based clustering was more effective in separating overlap groups than K-mean.
Opini Anda
Klik untuk menuliskan opini Anda tentang koleksi ini!
Kembali
Process time: 0 second(s)