Anda belum login :: 23 Apr 2025 01:02 WIB
Detail
ArtikelPerbandingan Metode Berbasis Model Dengan Metode K-Mean Dalam Analisis Gugus  
Oleh: Pardede, Timbul
Jenis: Article from Journal - ilmiah nasional - tidak terakreditasi DIKTI
Dalam koleksi: SIGMA: Jurnal Sains dan teknologi vol. 11 no. 2 (Jul. 2008), page 157-166.
Topik: K-mean Clustering Method; Model-Based Clustering Method; Expectation-Maximization Algorithm; Bayesian Information Criterion
Ketersediaan
  • Perpustakaan Pusat (Semanggi)
    • Nomor Panggil: SS25.6
    • Non-tandon: 1 (dapat dipinjam: 0)
    • Tandon: tidak ada
    Lihat Detail Induk
Isi artikelK-mean method is clustering methiod in which grouping techniques are based only distance measure among observed objects, without considering statistical aspects. Model-based clustering is a method that uses statistical aspects, as its theoretical basis i.e. probabilitt maximum criterion. This model has several variations with a variety of geometrical characteristics obtained by mean Gauss component. Data partition is conducted by utilizing expectation-maximization (EM) algorithm. By using Bayesian Information Criterion (BIC) the best model is then namely model-based clustering was more effective in separating overlap groups than K-mean.
Opini AndaKlik untuk menuliskan opini Anda tentang koleksi ini!

Kembali
design
 
Process time: 0 second(s)