Anda belum login :: 16 Apr 2025 11:16 WIB
Detail
ArtikelNonlinear Model Structure Detection Using Optimum Experimental Design and Orthogonal Least Squares  
Oleh: Hong, X. ; Harris, C. J.
Jenis: Article from Journal - ilmiah internasional
Dalam koleksi: IEEE Transactions on Neural Networks vol. 12 no. 2 (2001), page 435-438.
Topik: edge detection; non linear; structure design; detection; optimum; experimental design; orthogonal; least squares
Ketersediaan
  • Perpustakaan Pusat (Semanggi)
    • Nomor Panggil: II36.5
    • Non-tandon: 1 (dapat dipinjam: 0)
    • Tandon: tidak ada
    Lihat Detail Induk
Isi artikelA very efficient learning algorithm for model subset selection is introduced based on a new composite cost function that simultaneously optimizes the model approximation ability and model adequacy. The derived model parameters are estimated via forward orthogonal least squares, but the subset selection cost function includes an A ptimality design criterion to minimize the variance of the parameter estimates that ensures the adequacy and parsimony of the final model. An illustrative example is included to demonstrate the effectiveness of the new approach.
Opini AndaKlik untuk menuliskan opini Anda tentang koleksi ini!

Kembali
design
 
Process time: 0.015625 second(s)