Anda belum login :: 21 Jul 2025 14:25 WIB
Home
|
Logon
Hidden
»
Administration
»
Collection Detail
Detail
A Class of Learning Algorithms for Principal Component Analysis and Minor Component Analysis
Oleh:
Zhang, Qingfu
;
Yiu, Wing Leung
Jenis:
Article from Journal - ilmiah internasional
Dalam koleksi:
IEEE Transactions on Neural Networks vol. 11 no. 1 (2000)
,
page 200-204.
Topik:
principal component analysis
;
learning algorithms
;
principal
;
component analysis
Ketersediaan
Perpustakaan Pusat (Semanggi)
Nomor Panggil:
II36
Non-tandon:
1 (dapat dipinjam: 0)
Tandon:
tidak ada
Lihat Detail Induk
Isi artikel
In this paper, we first propose a differential equation for the generalized eigenvalue problem. We prove that the stable points of this differential equation are the eigenvectors corresponding to the largest eigenvalue. Based on this generalized differential equation, a class of principal component analysis (PCA) and minor component analysis (MCA) learning algorithms can be obtained. We demonstrate that many existing PCA and MCA learning algorithms are special cases of this class, and this class includes some new and simpler MCA learning algorithms. Our results show that all the learning algorithms of this class have the same order of convergence speed, and they are robust to implementation error.
Opini Anda
Klik untuk menuliskan opini Anda tentang koleksi ini!
Kembali
Process time: 0.015625 second(s)