Anda belum login :: 04 Jun 2025 12:58 WIB
Detail
ArtikelWinner-Take-All Neural Networks Using The Highest Threshold  
Oleh: Yang, Ju-Ferr ; Chen, Chi-Ming
Jenis: Article from Journal - ilmiah internasional
Dalam koleksi: IEEE Transactions on Neural Networks vol. 11 no. 1 (2000), page 194-199.
Topik: NEURAL NETWORKS; winner - take - all; neural networks
Ketersediaan
  • Perpustakaan Pusat (Semanggi)
    • Nomor Panggil: II36
    • Non-tandon: 1 (dapat dipinjam: 0)
    • Tandon: tidak ada
    Lihat Detail Induk
Isi artikelWe propose a fast winner - take - all (WTA) neural network by dynamically accelerating the mutual inhibition among competitive neurons. The highest - threshold neural network (HITNET) with an accelerated factor is evolved from the general mean - based neural network, which adopts the mean of active neurons as the threshold of mutual inhibition. When the accelerated factor is optimally designed, the ideal HITNET statistically achieves the highest threshold for mutual inhibition. Both theoretical analyzes and simulation results demonstrate that the practical HITNET converges faster than the existing WTA networks for a large number of competitors.
Opini AndaKlik untuk menuliskan opini Anda tentang koleksi ini!

Kembali
design
 
Process time: 0 second(s)