Anda belum login :: 10 Jun 2025 20:37 WIB
Home
|
Logon
Hidden
»
Administration
»
Collection Detail
Detail
Discrete-Time Convergence Theory and Updating Rules for Neural Networks With Energy Functions
Oleh:
Wang, Lipo
Jenis:
Article from Journal - ilmiah internasional
Dalam koleksi:
IEEE Transactions on Neural Networks vol. 8 no. 2 (1997)
,
page 445-447.
Topik:
NEURAL NETWORKS
;
discrete - time
;
neural networks
;
energy functions
Ketersediaan
Perpustakaan Pusat (Semanggi)
Nomor Panggil:
II36.2
Non-tandon:
1 (dapat dipinjam: 0)
Tandon:
tidak ada
Lihat Detail Induk
Isi artikel
We present convergence theorems for neural networks with arbitrary energy functions and discrete - time dynamics for both discrete and continuous neuronal input - output - functions. We discuss systematically how the neuronal updating rule should be extracted once an energy function is constructed for a given application, in order to guarantee the descent and minimization of the energy function as the network updates. We explain why the existing theory may lead to inaccurate results and oscillatory behaviours in the convergence process. We also point out the reason for and the side effects of using hysteresis neurons to suppress these oscillatory behaviours.
Opini Anda
Klik untuk menuliskan opini Anda tentang koleksi ini!
Kembali
Process time: 0.015625 second(s)