Anda belum login :: 16 Apr 2025 19:56 WIB
Home
|
Logon
Hidden
»
Administration
»
Collection Detail
Detail
A Simplification of The Backpropagation - Through - Time Algorithm For Optimal Neuro Control
Oleh:
Bersini, H.
;
Gorrini, V.
Jenis:
Article from Journal - ilmiah internasional
Dalam koleksi:
IEEE Transactions on Neural Networks vol. 8 no. 2 (1997)
,
page 437-441.
Topik:
Neuro fuzzy
;
backpropagation
;
time algorithm
;
neuro control
Ketersediaan
Perpustakaan Pusat (Semanggi)
Nomor Panggil:
II36.2
Non-tandon:
1 (dapat dipinjam: 0)
Tandon:
tidak ada
Lihat Detail Induk
Isi artikel
Backpropagation - through - time (BPTT) is the temporal extension of backpropagation which allows a multilayer neural network to approximate an optimal state - feedback control law provided some prior knowledge (Jacobian matrices) of the process is available. In this paper, a simplified version of the BPTT algorithm is proposed which more closely respects the principle of optimality of dynamic programming. Besides being simpler, the new algorithm is less time - consuming and allows in some cases the discovery of better control laws. A formal justification of this simplification is attempted by mixing the Lagrangian calculus underlying BPTT with Bellman - Hamilton - Jacobi equations. The improvements due to this simplification are illustrated by two optimal control problems : the rendezvous and the bioreactor.
Opini Anda
Klik untuk menuliskan opini Anda tentang koleksi ini!
Kembali
Process time: 0.015625 second(s)