Anda belum login :: 02 May 2025 14:59 WIB
Home
|
Logon
Hidden
»
Administration
»
Collection Detail
Detail
Top-Down Induction of Decision Trees Classifiers - a Survey
Oleh:
Rokach, Lior
;
Maimon, Oded
Jenis:
Article from Journal - ilmiah internasional
Dalam koleksi:
IEEE Transactions on Systems, Man, and Cybernetics: Part C Applications and Reviews vol. 35 no. 4 (Nov. 2005)
,
page 476-487.
Topik:
Classification
;
Decision Trees
;
Pruning Methods
;
Splitting Criteria
Ketersediaan
Perpustakaan Pusat (Semanggi)
Nomor Panggil:
II69.1
Non-tandon:
1 (dapat dipinjam: 0)
Tandon:
tidak ada
Lihat Detail Induk
Isi artikel
Decision trees are considered to be one of the most popular approaches for representing classifiers. Researchers from various disciplines such as statistics, machine learning, pattern recognition, and data mining considered the issue of growing a decision tree from available data. This paper presents an updated survey of current methods for constructing decision tree classifiers in a top-down manner. The paper suggests a unified algorithmic framework for presenting these algorithms and describes the various splitting criteria and pruning methodologies.
Opini Anda
Klik untuk menuliskan opini Anda tentang koleksi ini!
Kembali
Process time: 0.015625 second(s)