Anda belum login :: 01 Jun 2025 22:41 WIB
Detail
ArtikelAccelerating Evolutionary Algorithms With Gaussian Process Fitness Function Models  
Oleh: Buche, Dirk
Jenis: Article from Journal - ilmiah internasional
Dalam koleksi: IEEE Transactions on Systems, Man, and Cybernetics: Part C Applications and Reviews vol. 35 no. 2 (May 2005), page 183-194.
Topik: Evolution Control; Evolutionary Algorithms (Eas); Fitness Function Modeling; Gas Turbine Compressor Design; Gaussian Process; Surrogate Approach
Ketersediaan
  • Perpustakaan Pusat (Semanggi)
    • Nomor Panggil: II69.1
    • Non-tandon: 1 (dapat dipinjam: 0)
    • Tandon: tidak ada
    Lihat Detail Induk
Isi artikelWe present an overview of evolutionary algorithms that use empirical models of the fitness function to accelerate convergence, distinguishing between evolution control and the surrogate approach. We describe the Gaussian process model and propose using it as an inexpensive fitness function surrogate. Implementation issues such as efficient and numerically stable computation, exploration versus exploitation, local modeling, multiple objectives and constraints, and failed evaluations are addressed. Our resulting Gaussian process optimization procedure clearly outperforms other evolutionary strategies on standard test functions as well as on a real-world problem: the optimization of stationary gas turbine compressor profiles.
Opini AndaKlik untuk menuliskan opini Anda tentang koleksi ini!

Kembali
design
 
Process time: 0 second(s)