Anda belum login :: 06 May 2025 04:37 WIB
Home
|
Logon
Hidden
»
Administration
»
Collection Detail
Detail
Reducing the Memory Size of a Fuzzy Case-Based Reasoning System Applying Rough Set Techniques
Oleh:
Ferdandez-Riverola, F
;
Corchado, J.M.
Jenis:
Article from Journal - ilmiah internasional
Dalam koleksi:
IEEE Transactions on Systems, Man, and Cybernetics: Part C Applications and Reviews vol. 37 no. 1 (Jan. 2007)
,
page 138-146.
Topik:
Artificial Intelligence
;
Biological System Modeling
;
Casebased Reasoning
;
Fuzzy Systems
;
Reduced-Order Systems
Ketersediaan
Perpustakaan Pusat (Semanggi)
Nomor Panggil:
II69.1
Non-tandon:
1 (dapat dipinjam: 0)
Tandon:
tidak ada
Lihat Detail Induk
Isi artikel
Early work on case-based reasoning (CBR) reported in the literature shows the importance of soft computing techniques applied to different stages of the classical four-step CBR life cycle. This correspondence proposes a reduction technique based on rough sets theory capable of minimizing the case memory by analyzing the contribution of each case feature. Inspired by the application of the minimum description length principle, the method uses the granularity of the original data to compute the relevance of each attribute. The rough feature weighting and selection method is applied as a preprocessing step prior to the generation of a fuzzy rule system, which is employed in the revision phase of the proposed CBR system. Experiments using real oceanographic data show that the rough sets reduction method maintains the accuracy of the employed fuzzy rules, while reducing the computational effort needed in its generation and increasing the explanatory strength of the fuzzy rules.
Opini Anda
Klik untuk menuliskan opini Anda tentang koleksi ini!
Kembali
Process time: 0 second(s)