Anda belum login :: 23 Apr 2025 02:21 WIB
Home
|
Logon
Hidden
»
Administration
»
Collection Detail
Detail
Neuron Selection for RBF Neural Network Classifier Based on Data Structure Preserving Criterion
Oleh:
Mao, K. Z.
;
Huang, Guang-Bin
Jenis:
Article from Journal - ilmiah internasional
Dalam koleksi:
IEEE Transactions on Neural Networks vol. 16 no. 6 (Nov. 2005)
,
page 1531-1540.
Topik:
neural network
;
RBF neural network
;
data structure
;
criterion
Ketersediaan
Perpustakaan Pusat (Semanggi)
Nomor Panggil:
II36
Non-tandon:
1 (dapat dipinjam: 0)
Tandon:
tidak ada
Lihat Detail Induk
Isi artikel
The central problem in training a radial basis function neural network is the selection of hidden layer neurons. In this paper, we propose to select hidden layer neurons based on data structure preserving criterion. Data structure denotes relative location of samples in the high - dimensional space. By preserving the data structure of samples including those that are close to separation boundaries between different classes, the neuron subset selected retains the separation margin underlying the full set of hidden layer neurons. As a direct result, the network obtained tends to generalize well.
Opini Anda
Klik untuk menuliskan opini Anda tentang koleksi ini!
Kembali
Process time: 0.015625 second(s)