Anda belum login :: 23 Apr 2025 02:21 WIB
Detail
ArtikelNeuron Selection for RBF Neural Network Classifier Based on Data Structure Preserving Criterion  
Oleh: Mao, K. Z. ; Huang, Guang-Bin
Jenis: Article from Journal - ilmiah internasional
Dalam koleksi: IEEE Transactions on Neural Networks vol. 16 no. 6 (Nov. 2005), page 1531-1540.
Topik: neural network; RBF neural network; data structure; criterion
Ketersediaan
  • Perpustakaan Pusat (Semanggi)
    • Nomor Panggil: II36
    • Non-tandon: 1 (dapat dipinjam: 0)
    • Tandon: tidak ada
    Lihat Detail Induk
Isi artikelThe central problem in training a radial basis function neural network is the selection of hidden layer neurons. In this paper, we propose to select hidden layer neurons based on data structure preserving criterion. Data structure denotes relative location of samples in the high - dimensional space. By preserving the data structure of samples including those that are close to separation boundaries between different classes, the neuron subset selected retains the separation margin underlying the full set of hidden layer neurons. As a direct result, the network obtained tends to generalize well.
Opini AndaKlik untuk menuliskan opini Anda tentang koleksi ini!

Kembali
design
 
Process time: 0.015625 second(s)