Anda belum login :: 18 Apr 2025 09:32 WIB
Home
|
Logon
Hidden
»
Administration
»
Collection Detail
Detail
Design and Analysis of A General Recurrent Neural Network Model for Time-Varying Matrix Inversion
Oleh:
Zhang, Yunong
;
Ge, S. S.
Jenis:
Article from Journal - ilmiah internasional
Dalam koleksi:
IEEE Transactions on Neural Networks vol. 16 no. 6 (Nov. 2005)
,
page 1477-1490.
Topik:
time
;
design
;
neural network
;
time - varyung
;
matrix inversion
Ketersediaan
Perpustakaan Pusat (Semanggi)
Nomor Panggil:
II36
Non-tandon:
1 (dapat dipinjam: 0)
Tandon:
tidak ada
Lihat Detail Induk
Isi artikel
Following the idea of using first - order time derivatives, this paper presents a general recurrent neural network (RNN) model for online inversion of time - varying matrices. Different kinds of activation functions are investigated to guarantee the global exponential convergence of the neural model to the exact inverse of a given time - varying matrix. The robustness of the proposed neural model is also studied with respect to different activation functions and various implementation errors. Simulation results, including the application to kinematic control of redundant manipulators, substantiate the theoretical analysis and demonstrate the efficacy of the neural model on time - varying matrix inversion, especially when using a power - sigmoid activation function.
Opini Anda
Klik untuk menuliskan opini Anda tentang koleksi ini!
Kembali
Process time: 0 second(s)