Anda belum login :: 09 Jun 2025 19:11 WIB
Detail
ArtikelNDRAM : Nonlinear Dynamic Recurrent Associative Memory for Learning Bipolar and Nonbipolar Correlated Patterns  
Oleh: Chartier, S. ; Proulx, R.
Jenis: Article from Journal - ilmiah internasional
Dalam koleksi: IEEE Transactions on Neural Networks vol. 16 no. 6 (Nov. 2005), page 1393-1400.
Topik: bipolarity; NDRAM; non linear; dynamic; learning; bipolar; non bipolar; patterns
Ketersediaan
  • Perpustakaan Pusat (Semanggi)
    • Nomor Panggil: II36
    • Non-tandon: 1 (dapat dipinjam: 0)
    • Tandon: tidak ada
    Lihat Detail Induk
Isi artikelThis paper presents a new unsupervised attractor neural network, which, contrary to optimal linear associative memory models, is able to develop nonbipolar attractors as well as bipolar attractors. Moreover, the model is able to develop less spurious attractors and has a better recall performance under random noise than any other Hopfield type neural network. Those performances are obtained by a simple Hebbian / anti - Hebbian online learning rule that directly incorporates feedback from a specific nonlinear transmission rule. Several computer simulations show the model's distinguishing properties.
Opini AndaKlik untuk menuliskan opini Anda tentang koleksi ini!

Kembali
design
 
Process time: 0.015625 second(s)