Anda belum login :: 09 Jun 2025 19:11 WIB
Home
|
Logon
Hidden
»
Administration
»
Collection Detail
Detail
NDRAM : Nonlinear Dynamic Recurrent Associative Memory for Learning Bipolar and Nonbipolar Correlated Patterns
Oleh:
Chartier, S.
;
Proulx, R.
Jenis:
Article from Journal - ilmiah internasional
Dalam koleksi:
IEEE Transactions on Neural Networks vol. 16 no. 6 (Nov. 2005)
,
page 1393-1400.
Topik:
bipolarity
;
NDRAM
;
non linear
;
dynamic
;
learning
;
bipolar
;
non bipolar
;
patterns
Ketersediaan
Perpustakaan Pusat (Semanggi)
Nomor Panggil:
II36
Non-tandon:
1 (dapat dipinjam: 0)
Tandon:
tidak ada
Lihat Detail Induk
Isi artikel
This paper presents a new unsupervised attractor neural network, which, contrary to optimal linear associative memory models, is able to develop nonbipolar attractors as well as bipolar attractors. Moreover, the model is able to develop less spurious attractors and has a better recall performance under random noise than any other Hopfield type neural network. Those performances are obtained by a simple Hebbian / anti - Hebbian online learning rule that directly incorporates feedback from a specific nonlinear transmission rule. Several computer simulations show the model's distinguishing properties.
Opini Anda
Klik untuk menuliskan opini Anda tentang koleksi ini!
Kembali
Process time: 0.015625 second(s)