Anda belum login :: 05 Jun 2025 04:41 WIB
Home
|
Logon
Hidden
»
Administration
»
Collection Detail
Detail
Exploiting Unlabeled Data in Concept Drift Learning
Oleh:
Widyantoro, Dwi Hendratmo
Jenis:
Article from Journal - ilmiah nasional - tidak terakreditasi DIKTI
Dalam koleksi:
Jurnal Informatika vol. 8 no. 1 (May 2007)
,
page 54-62.
Topik:
LEARNING
;
concept drift learning
;
unlabeled data
;
persistence assumption
Fulltext:
dwi hendratmo widyantoro.pdf
(179.36KB)
Ketersediaan
Perpustakaan Pusat (Semanggi)
Nomor Panggil:
JJ103
Non-tandon:
1 (dapat dipinjam: 0)
Tandon:
tidak ada
Lihat Detail Induk
Isi artikel
Learning unlabeled data in a drifting environment still receives little attention. This paper presents a concept tracker algorithm for learning concept drift that exploits unlabeled data. In the absence of complete labeled data, instance classes are identified using a concept hierarchy that is incrementally constructed from data stream (mostly unlabeled data) in unsupervised mode. The persistence assumption in temporal reasoning is then applied to infer target concepts. Empirical evaluation that has been conducted on information - filtering domains demonstrates the effectiveness of this approach.
Opini Anda
Klik untuk menuliskan opini Anda tentang koleksi ini!
Kembali
Process time: 0.015625 second(s)