Anda belum login :: 04 Jun 2025 13:53 WIB
Home
|
Logon
Hidden
»
Administration
»
Collection Detail
Detail
Pengenalan Huruf Tulisan Tangan Berderau dan Terskala Berbasis Ekstraksi Ciri DCT dengan Menggunakan Jaringan Syaraf Probabilistik
Oleh:
Sumarno, Linggo
Jenis:
Article from Journal - ilmiah nasional - tidak terakreditasi DIKTI
Dalam koleksi:
SIGMA: Jurnal Sains dan teknologi vol. 10 no. 2 (Jul. 2007)
,
page 185-197.
Topik:
Handwritten Letter
;
Noisy
;
Scaled
;
DCT
;
Probabilistic Neural Network
Ketersediaan
Perpustakaan Pusat (Semanggi)
Nomor Panggil:
SS25.6
Non-tandon:
1 (dapat dipinjam: 0)
Tandon:
tidak ada
Lihat Detail Induk
Isi artikel
This paper proposes a system of off-line recognition of noisy and scaled handwritten letters based on DCT (Discrete Cosine Transform), which is used extensively in lossy compression of data. The system employs Probabilistic Neural Netwok, which is used in many engineering problems and pattern recognition. Simulation results on existing database, which was created by a single writer, indicate that the system is adequate to be used up to certain levels of noise and scaling. At noise level 0% and scale 1, the system is able to get recognition rate up to 91%, whereas at noise level 0% and scale 0.7, as well as at noise level 10% and scale 0.8, the recognition rates are 84.6% and 79.9%, respectively.
Opini Anda
Klik untuk menuliskan opini Anda tentang koleksi ini!
Kembali
Process time: 0.015625 second(s)