Anda belum login :: 29 Apr 2025 12:55 WIB
Home
|
Logon
Hidden
»
Administration
»
Collection Detail
Detail
Numerical Integration-Based Gaussian Mixture Filters for Maximum Likelihood Estimation of Asymmetric Stochastic Volatility Models
Oleh:
Kawakatsu, Hiroyuki
Jenis:
Article from Journal - ilmiah internasional
Dalam koleksi:
The Econometrics Journal vol. 10 no. 2 (2007)
,
page 342–358.
Topik:
Stochastic
;
sthocastic votality
;
non linear filtering
;
leverage effect
;
numerical integration
;
mixture gaussian
Fulltext:
342.pdf
(509.13KB)
Ketersediaan
Perpustakaan Pusat (Semanggi)
Nomor Panggil:
EE39.3
Non-tandon:
1 (dapat dipinjam: 0)
Tandon:
tidak ada
Lihat Detail Induk
Isi artikel
I consider Gaussian filters based on numerical integration for maximum likelihood estimation of stochastic volatility models with leverage. I show that for this class of models, the prediction step of the Gaussian filter can be evaluated analytically without linearizing the state – space model. Monte Carlo simulations show that the mixture Gaussian filter performs remarkably well in terms of both accuracy and computation time compared to the quasi - maximum likelihood and importance sampler filters. The result that the prediction step of the Gaussian filter can be evaluated analytically is shown to apply more generally to a number of commonly used specifications of the stochastic volatility model.
Opini Anda
Klik untuk menuliskan opini Anda tentang koleksi ini!
Kembali
Process time: 0.015625 second(s)