Anda belum login :: 29 Apr 2025 12:55 WIB
Detail
ArtikelNumerical Integration-Based Gaussian Mixture Filters for Maximum Likelihood Estimation of Asymmetric Stochastic Volatility Models  
Oleh: Kawakatsu, Hiroyuki
Jenis: Article from Journal - ilmiah internasional
Dalam koleksi: The Econometrics Journal vol. 10 no. 2 (2007), page 342–358.
Topik: Stochastic; sthocastic votality; non linear filtering; leverage effect; numerical integration; mixture gaussian
Fulltext: 342.pdf (509.13KB)
Ketersediaan
  • Perpustakaan Pusat (Semanggi)
    • Nomor Panggil: EE39.3
    • Non-tandon: 1 (dapat dipinjam: 0)
    • Tandon: tidak ada
    Lihat Detail Induk
Isi artikelI consider Gaussian filters based on numerical integration for maximum likelihood estimation of stochastic volatility models with leverage. I show that for this class of models, the prediction step of the Gaussian filter can be evaluated analytically without linearizing the state – space model. Monte Carlo simulations show that the mixture Gaussian filter performs remarkably well in terms of both accuracy and computation time compared to the quasi - maximum likelihood and importance sampler filters. The result that the prediction step of the Gaussian filter can be evaluated analytically is shown to apply more generally to a number of commonly used specifications of the stochastic volatility model.
Opini AndaKlik untuk menuliskan opini Anda tentang koleksi ini!

Kembali
design
 
Process time: 0.015625 second(s)