Anda belum login :: 23 Nov 2024 14:12 WIB
Detail
ArtikelLag-Augmented Two- and Three-Stage Least Squares Estimators for Integrated Structural Dynamic Models  
Oleh: Cheng, Hsiao ; Siyan, Wang
Jenis: Article from Journal - ilmiah internasional
Dalam koleksi: The Econometrics Journal vol. 10 no. 1 (2007), page 49-81.
Topik: Dynamic Model; structural vector autoregressions; non stationary time series; cointegration; hypothesis testing; two - and three - stage least squares
Fulltext: 49.pdf (407.49KB)
Ketersediaan
  • Perpustakaan Pusat (Semanggi)
    • Nomor Panggil: EE39.3
    • Non-tandon: 1 (dapat dipinjam: 0)
    • Tandon: tidak ada
    Lihat Detail Induk
Isi artikelWe consider a lag - augmented two - or three - stage least - squares estimator for a structural dynamic model of non-stationary and possibly cointegrated variables without the prior knowledge of unit roots or rank of cointegration. We show that the conventional two - and three - stage least - squares estimators are consistent but contain non - standard distributions without the strict exogeneity assumption ; hence the conventional Wald type test statistics may not be chi - square distributed. We propose a lag order augmented two - or three - stage least - squares estimator that is consistent and asymptotically normally distributed. Limited Monte Carlo studies are conducted to shed light on the finite sample properties of various estimators.
Opini AndaKlik untuk menuliskan opini Anda tentang koleksi ini!

Kembali
design
 
Process time: 0.015625 second(s)